

Cambridge AS & A Level

CHEMISTRY Paper 2

Topical Past Paper Questions

+ Answer Scheme

2015 - 2021

Chapter 4

States of matter

4.1 The gaseous state: ideal and real gases and pV = nRT

 $17.\ 9701_s21_qp_21\ Q:\ 2$

Carbon monoxide gas, CO(g), and nitrogen gas, $N_2(g)$, are both diatomic molecules.

(a) The diagram shows the arrangement of outer electrons in a molecule of CO(g).

(i)	State one similarity and one difference in the w molecule are bonded together compared to the ato		
			9
		20	
		, CO	[2

(ii) The table states the electronegativity values of carbon, nitrogen and oxygen atoms.

	С	N	0
electronegativity	2.5	3.0	3.5

Use the electronegativity values and relevant details from the *Data Booklet* to complete the table below.

	N_2	СО
number of electrons per molecule	69,	
type(s) of intermolecular (van der Waals') force		

[2]

		[1
	Suggest why CO(g) is more reactive than $N_2(g)$.	
(b)	$N_2(g)$ is less reactive than CO(g) even though $N_2(g)$ has a lower bond energy than CO(g).	

(c)	c) Both carbon monoxide and nitrogen are gases at room temperature and pressure.				
	They both behave like ideal gases under certain conditions.				
	(i)	State the two conditions necessary for these two gases to approach ideal gas behaviour.			
	(ii)	Explain why N ₂ (g) behaves more like an ideal gas than CO(g) does at 20.0 °C and 101 kPa.			
		[2]			
(d)	(d) Calculate the amount, in mol, of pure nitrogen gas which occupies 100 cm³ at 101 kPa and 20.0 °C.				
	Use relevant information from the Data Booklet. Show your working.				
Assume nitrogen behaves as an ideal gas.					
	mol [3]				
		[Total: 11]			

18. $9701_s19_qp_21$ Q: 3

(a) Construct an equation for the second ionisation energy of argon.

......[1]

(b) The graph shows successive ionisation energies for the element argon.

Complete the graph with predictions for the eighth and ninth ionisation energies of argon. Use a cross (x) for each data point. [2]

(c) The energy value required to remove the first electron from an atom of argon is circled on the graph.

Sketch the shape of the orbital that contains this electron.

(d)		orine exists as a diatomic gas, $Cl_2(g)$. A sample of $Cl_2(g)$ was made during a chemical ction. When measured at 404 kPa and 25 °C the sample occupied a volume of 20.0 cm ³ .	
	(i)	Calculate the mass, in grams, of $Cl_2(g)$ formed.	
		For this calculation, assume that chlorine behaves as an ideal gas under these conditions.	
		mass of $Cl_2(g) = \dots g$ [3]	
	(ii)	Calculate the number of chlorine atoms in this sample of $Cl_2(g)$. You may find it helpful to use your answer to (d)(i) .	
		If you are unable to calculate an answer to (d)(i), use 0.36g of ${\rm C} I_2$. This is not the correct answer.	
	'iii\	number of chlorine atoms =	
'	(iii) $Cl_2(g)$ does not behave as an ideal gas under these conditions. Explain why $Cl_2(g)$ behaves even less ideally at:		
		• very high pressures	
		very low temperatures.	
		[2]	
		[Total: 11]	

4.2 The solid state: lattice structures

19. 9701_s21_qp_22 Q: 2

(ii)

The strength of interaction between particles determines whether the substance is a solid, liquid or gas at room temperature.

(a) Lithium sulfide, Li₂S, is a crystalline solid with a melting point of 938 °C. It conducts electricity when it is molten.

(i) Give the formulae of the particles present in solid lithium sulfide.

	. [1]
Explain, in terms of the structure of the crystalline solid, why lithium sulfide has a melting point.	high

- (b) Carbon monoxide, CO, is a gas at room temperature and pressure. It contains a coordinate bond.
 - (i) Explain what is meant by coordinate bond.

	~~
-6	
	[1]

(ii) Draw a 'dot-and-cross' diagram to show the arrangement of outer electrons in CO.

Show the electrons belonging to the C atom as x.

Show the electrons belonging to the O atom as ●.

[2]

Nitrogen, N_2 , is also a gas at room temperature and pressure. Neither CO nor N_2 is an ideal gas.

(i)	State two assumptions that are made about the behaviour of particles in an ideal gas.			ıl gas.
	1			
	2			
				[2]
(ii)	Explain why N ₂ does not behave as	s an ideal gas at very hi	gh pressures.	
				,
			. 29	
				[2]
····		•		
(iii)	Complete the table by naming all separate samples of $N_2(g)$ and CO		ular forces (van der v	(vaais') in
		N (a)	CO(g)	
num	ber of electrons per molecule	N ₂ (g)	14	-
presence of a dipole moment		X	√	
boiling point/°C		-195.8	-191.5	
		K		
inte	molecular forces (van der Waals')			
				 [2]
(iv)	Suggest why the bond in a molecu	le of CO contains a dino	ale moment	
(14)	Suggest why the bollular a molecul			541
			[Total: 13]

